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The results of a numerical study of the magnetic dynamo effect in cylindrical von Kármán plasma
flow are presented with parameters relevant to the Madison Plasma Couette Experiment. This
experiment is designed to investigate a broad class of phenomena in flowing plasmas. In a plasma,
the magnetic Prandtl number Pm can be of order unity �i.e., the fluid Reynolds number Re is
comparable to the magnetic Reynolds number Rm�. This is in contrast to liquid metal experiments,
where Pm is small �so, Re�Rm� and the flows are always turbulent. We explore dynamo action
through simulations using the extended magnetohydrodynamic NIMROD code for an isothermal
and compressible plasma model. We also study two-fluid effects in simulations by including the Hall
term in Ohm’s law. We find that the counter-rotating von Kármán flow results in sustained dynamo
action and the self-generation of magnetic field when the magnetic Reynolds number exceeds a
critical value. For the plasma parameters of the experiment, this field saturates at an amplitude
corresponding to a new stable equilibrium �a laminar dynamo�. We show that compressibility in the
plasma results in an increase of the critical magnetic Reynolds number, while inclusion of the Hall
term in Ohm’s law changes the amplitude of the saturated dynamo field but not the critical value for
the onset of dynamo action. © 2011 American Institute of Physics. �doi:10.1063/1.3559472�

I. INTRODUCTION

The dynamo phenomenon, where magnetic fields are
self-generated by a moving and electrically conducting fluid,
is one of the most intriguing subjects of modern magnetohy-
drodynamics �MHD�. Dynamos have particularly important
applications in astrophysics.1,2 Today, it is widely believed
that the magnetic fields of planets and stars originate from
dynamo action in their interiors.3–5 As far as we know, all
astrophysical dynamos are turbulent with extremely high
fluid Reynolds numbers, Re, which makes theoretical treat-
ments very involved and realistic simulations are currently
impossible. At the same time, some key physical processes
likely at work in astrophysical dynamos can be revealed by
considering idealized laminar dynamos related to spatially
smooth stationary velocity fields at comparatively low Re. In
particular, the theoretical study of laminar dynamos allows
one to determine the critical magnetic Reynolds number
above which dynamo excitation takes place to find the struc-
ture and magnitude of a saturated dynamo field and to un-
derstand the influence on the dynamo of different plasma
effects, such as compressibility, two-fluid effects, and aniso-
tropic transport.

A number of laminar MHD flows appropriate for dy-
namo generation have been analyzed in the literature.6–11 In
most of these studies, only the kinematic dynamo problem
has been considered, in which the magnetic induction equa-
tion is solved as an eigenvalue problem for a given velocity
field �not necessarily satisfying the Navier–Stokes equation�
to find the growth rate of the magnetic field. The nonlinear
feedback of the fields on the flows is ignored in the kine-
matic treatment. Among the laminar flows that lead to kine-
matic dynamos at sufficiently high magnetic Reynolds num-

bers are cylindrical helical jets �Ponomarenko dynamo6�,
two-dimensional spatially periodic arrays of helical jets
�Roberts’ scheme7�, cylindrical von Kármán8 and Taylor–
Couette flows,9 and spherical Dudley–James flows.10 The
first three of these flows have been tested recently in experi-
ments with liquid sodium, and successful observations of
dynamo action have been reported in Refs. 12–14. The flows
in these experiments were turbulent, thus making it difficult
to compare experimental data with predictions of laminar
dynamo theory, although in the first two, the role of turbu-
lence was small as the flows were strongly constrained. This
is a common disadvantage of all liquid metal dynamo experi-
ments: the extremely low magnetic Prandtl numbers �the ra-
tio of kinetic viscosity � to resistivity � or, equivalently, the
ratio of magnetic Reynolds to fluid Reynolds Pm=� /�
=Rm /Re�10−5 for liquid sodium� requires very high fluid
Reynolds numbers �Re�106–107� in order to achieve the
magnetic Reynolds number sufficient for dynamo action
�Rm�101–102� in liquid metals. As a result, the relevant
flow is always turbulent.

The present paper is motivated by the Madison Plasma
Couette Experiment �MPCX�,15 which is designed to study
MHD phenomena driven by plasma flows. One of the nov-
elties of this experiment is the ability to change the magnetic
Prandtl number of the plasma by several orders of magnitude
from Pm�1 to Pm�1. This flexibility makes it possible to
investigate laminar dynamos by choosing a regime with
Pm�1–10 and Re�102. As a result, the direct comparison
of experimental data with numerical simulations of laminar
dynamo can be performed. Such a comparison can also be
used for the first time to test different MHD models as well
as the numerical codes which simulate them.
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The goal of this study is to investigate possible dynamo
action in the MPCX using the extended MHD code
NIMROD,16 which can accurately model plasma dynamics
in the specific geometry for realistic experimental conditions.
Among the features of NIMROD is the possibility to study
effects beyond standard MHD, including the addition of the
Hall term in Ohm’s law. The effect of the Hall term on dy-

namo action has recently been studied in periodic box
simulations,17,18 and the Hall term will almost certainly play
an important role in the MPCX. The results of our simula-
tions can also be used for the optimization of plasma param-
eters and as guidance for the experimental operation.

In this paper, we report the results of NIMROD simula-
tions of a laminar magnetic dynamo in the cylindrical von
Kármán flow under conditions relevant to the MPCX. Simu-
lations are done for an isothermal compressible MHD
plasma model with and without two-fluid effects �the Hall
term�. The structure of the paper is as follows. In Sec. II, we
briefly review the MPCX experiment and describe the NIM-
ROD plasma model. In Sec. III, the hydrodynamical proper-
ties of von Kármán flow are studied. In Sec. IV, the kine-
matic dynamo problem is considered for von Kármán flow in
a cylinder, and the self-generation of the magnetic field is
demonstrated for parameters achievable in the experiment. In
Sec. V, the results of simulations of nonlinear dynamo satu-
ration are presented, and the effect of the Hall term is stud-
ied. In Sec. VI, we conclude with a discussion of the effects
that can influence the magnetic dynamo in such plasma
flows.

II. NIMROD MODELS OF MPCX

The MPCX is closely related to the spherical plasma
experiment described in Ref. 19, though here the geometry is
cylindrical and the apparatus is somewhat smaller in size
�1 m in diameter�. In the MPCX, the plasma is confined by a
multicusp magnetic field created by axisymmetric rings of
permanent magnets of alternating polarity and localized at
the boundary of the cylindrical chamber �Fig. 1�. There are
10 magnetic rings at the cylindrical wall and 8 at both the top
and bottom end-caps. Ring anodes and cathodes positioned
between the magnet rings can be biased with arbitrary poten-
tials. The resulting E�B drift of plasma is in the azimuthal
direction and can be an arbitrary axisymmetric function at
the boundary of the vessel. This arrangement allows arbitrary
shear flows to be imposed in the MPCX.

The use of a plasma gives experimentalists great flexibil-
ity in choosing the regimes of operation. By varying the
plasma density �gas flow rate�, ion mass �H, He, Ne, Ar�,
electron temperature �heating power�, and flow speed �bias
potentials of electrodes�, a wide range of parameters can be
achieved in experiment �Table I�. Such flexibility is advanta-
geous over the liquid metal dynamo experiments, where Pm
is fixed and small. For a description of the plasma parameters
in our simulations, we introduce several standard dimension-
less numbers: magnetic Prandtl

Pm �
�

�
= 46

Te
3/2�eV�Ti

5/2�eV�
n0�1018 m−3��i

1/2�2 , �1�

fluid Reynolds

Re �
R0V0

�
= 0.52

R0�m�V0�km/s�n0�1018 m−3��i
1/2�

Ti
5/2�eV�

,

�2�
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FIG. 1. �Color online� Madison Plasma Couette Experiment �MPCX�: �a�
sketch; �b� partial vertical cross section. Rings of permanent magnets of
alternating polarity line the inside of the cylinder with their poles oriented
normally to the walls. Ring anodes and cathodes are placed between the
magnets. The resulting E�B drift is in the azimuthal direction. By varying
the potential between the anodes and cathodes, the velocity forcing at the
outer boundary can be customized.
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magnetic Reynolds

Rm �
R0V0

�
= 24

R0�m�V0�km/s�Te
3/2�eV�

�
, �3�

Mach

M �
V0

Cs
= 0.10

V0�km/s��i
1/2

	1/2Te
1/2�eV�

, �4�

Hall


 �
c

R0�pi
= 0.23

�i
1/2

R0�m�n0
1/2�1018 m−3�

, �5�

where � is the plasma kinematic viscosity, � is the mag-
netic diffusivity, � is the Coulomb logarithm �typically
��10–20�, Cs is the ion sound speed, 	 is the adiabatic
index, c is the speed of light, �pi is the ion plasma frequency,
and other parameters are defined in Table I. Equations
�1�–�3� for numerical estimates of Pm, Re, and Rm are de-
rived from Braginskii equations for a plasma with singly
charged ions in a weak magnetic field;20 the weak-field ap-
proximation is reasonable for the bulk of MPCX because the
high-multipole cusp field is concentrated mostly near the
wall and quickly falls off away from it. The typical values of
these nondimensional numbers are listed in Table I. For con-
venience, we also give the “inverse” mapping formulary:
peak driving velocity, km/s

V0 = 2.54
�1/4	3/8Rm1/4M3/4

�i
3/8R0

1/4�m�
, �6�

average number density, 1018 m−3

n0 = 0.053
�i


2R0
2�m�

, �7�

electron temperature, eV

Te = 0.065
�1/2�i

1/4Rm1/2

	1/4M1/2R0
1/2�m�

, �8�

ion temperature, eV

Ti = 0.35
�1/2�i

9/20	3/20Rm1/10M3/10


4/5Re2/5R0
1/2�m�

. �9�

The results presented in this paper are obtained using the
extended MHD code NIMROD.16 As a simulation frame-
work, we choose the isothermal Hall MHD approach. This is
one of the simplest NIMROD models allowing for two-fluid
effects and compressibility, and this appears to be a good
approximation for the plasma under experimental conditions.
The equations of this model in nondimensional form are

�n

��
= − � · �nv� , �10�

n
�v

��
= − n�v · ��v −

1

M2 � n + �� � b� � b

+
1

Re
	�2v +

1

3
� �� · v�
 , �11�

�b

��
= � � 	v � b −




n
�� � b� � b
 +

1

Rm
�2b . �12�

In these equations, �, n, v, and b stand for normalized time,
number density, velocity, and magnetic field, respectively:

� =
V0

R0
t, n =




n0mi
, v =

V

V0
, b =

B

V0
�4�n0mi

,

where 
 is the mass density and mi is the ion mass. The unit
of length is the cylinder radius R0, while V0 is the peak
velocity of the driven von Kármán flow. An important differ-
ence of this system of Eqs. �10�–�12� from a standard single-
fluid MHD model is the inclusion of the Hall term in the
magnetic induction Eq. �12�, which takes into account two-
fluid effects. The magnitude of this term is characterized by
the nondimensional Hall number 
. We will consider simu-
lations where the Hall term is significant �0�
�1� and oth-
ers where it is absent �
=0�. The simulations are performed
in a nonrotating cylindrical coordinate system �r ,� ,z�, with
the plasma occupying the region �0�r�1,−1�z�1�.

The Hall MHD Eqs. �10�–�12� also require the specifi-
cation of boundary conditions. Two different sets of bound-
ary conditions are used in the simulations. Set I is used only
to demonstrate the possibility of stirring the plasma with the
applied multicusp magnetic field and an appropriately modu-
lated tangential electric field at the boundary. In set I, no-slip,
stationary, and rigid walls are assumed, so all components of
the velocity vanish at the boundary,

v�� = 0. �13�

For the magnetic and electric fields in set I, we assume per-
fectly conducting walls, implying that the time-varying nor-
mal component of the magnetic field and the time-varying
tangential component of the electric field are zero at the
boundary,

TABLE I. Parameters of MPCX.

Quantity Symbol Value Unit

Radius of cylinder R0 0.5 m

Height of cylinder H 1 m

Peak driving velocity V0 0–20 km/s

Average number density n0 1017–1019 m−3

Electron temperature Te 2–10 eV

Ion temperature Ti 0.5–4 eV

Ion species H, He, Ne, Ar

Ion mass �i 1, 4, 20, 40 amu

Ion charge Z 1 e

Magnetic Prandtl Pm 1�10−3–5�102

Fluid Reynolds Re 0–4�104

Magnetic Reynolds Rm 0–1�103

Mach M 0–4

Hall 
 0.15–1.8
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b̃n�� = 0, Ẽt�� = 0, �14�

where the normalized electric field is

E = − v � b +



n
�� � b� � b +

1

Rm
� � b .

Note that the externally applied time-independent multicusp
magnetic field b0 and boundary electric field E0 do not sat-
isfy Eq. �14�, and thus provide E0�b0 stirring at the bound-
ary. Using different modulations of the tangential boundary
electric field, we have successfully simulated several types of
flows. Figure 2 shows the results for the so-called von
Kármán flow, in which plasma is driven in opposite azi-
muthal directions near the top and bottom
end-caps. Having demonstrated that E0�b0 stirring will suc-
cessfully drive a von Kármán flow under realistic experimen-
tal conditions, we now turn to a simpler set of boundary
conditions.

All results reported in the later sections are obtained
with the boundary conditions of set II. In set II, we ignore
the applied multicusp magnetic field and the tangential elec-
tric field. Instead, we assume that the driving of the plasma is
due to differentially rotating walls. This assumption greatly
simplifies the model and allows us to focus on the physics of
the dynamo action and not on details of the plasma driving.
The boundary conditions for the full electric and magnetic
fields are

bn�� = 0, Et�� = 0 �15�

�perfectly conducting walls�, and the velocity conditions are

v�r=1 = ze�,

v�z=−1 = − re�, �16�

v�z=1 = re�

�no-slip differentially rotating rigid walls�. These velocity
boundary conditions correspond approximately to von
Kármán flow: the top and bottom end-caps are counter-
rotating with the same angular velocity, and the side wall has
a linear dependence of angular velocity on z to match the
rotation of top and bottom end-caps. This flow is the primary
object of our dynamo study.

We briefly remark on the spatial and temporal resolution
used in these simulations. For spatial discretization,
NIMROD employs a high order finite element method in
r- and z-directions and a pseudospectral method in periodic
�-direction with dependence eim� for each Fourier harmonic
�integer m represents the azimuthal mode number�. The basis
functions of the finite elements are polynomials. In all of the
simulations presented here, we have used a uniform meshing
of the r−z plane with 8�16 finite elements each of poly-
nomial degree 3, and 11 Fourier harmonics in the azimuthal
�-direction. This spatial resolution appears to be sufficient
for the laminar flows under consideration. To verify the
simulation results obtained at this resolution, we have re-
peated a nonlinear MHD run introduced in Sec. V using
mesh with 16�32 finite elements in r−z plane and 11 azi-
muthal modes. The time dynamics of the flow and the mag-

FIG. 2. �Color online� Structure of axisymmetric equilibrium von Kármán
flow driven by electromagnetic system at the boundary for Mach number
M =1, fluid Reynolds number Re=200, and magnetic Reynolds number
Rm=20: �a� number density; �b� velocity; �c� magnetic field. Cross-sections
in r−z plane are given. Left panels of �b� and �c� show stream lines of
poloidal parts �r- and z-components� of flux nv and magnetic field b, re-
spectively, superimposed on absolute values of these parts depicted in col-
ors. Right panels of �b� and �c� show azimuthal components of correspond-
ing fields.
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netic field were fully reproduced, which confirms that a con-
verged solution is obtained already at the coarser resolution.
The solutions are time-evolved using a semi-implicit stag-
gered leap-frogging algorithm, which is fully detailed in
Refs. 16 and 21. We should emphasize here that the algo-
rithm employed in NIMROD can be made numerically stable
for arbitrarily large time-steps in both single-fluid and Hall
MHD by choosing the appropriate coefficients of the semi-
implicit operators.21 However, in order to accurately model
the temporal behavior of the system with significant flows, in
the present simulations we have used an adaptive time-step
based on the explicit Courant–Friedrichs–Lewy �CFL� con-
dition for advection. Even in the dynamo simulations, we
find that advection by the axisymmetric velocity field domi-
nates the CFL criteria, rather than either the Alfvén or whis-
tler waves associated with the relatively weak magnetic
fields.

III. HYDRODYNAMICAL EQUILIBRIUM AND STABILITY

In this section, we consider the basic hydrodynamical
�no magnetic field, b=0� properties of von Kármán flow in a
cylinder, in which the plasma is stirred at the edge via the

boundary conditions of set II �Eq. �16��. We start with the
axisymmetric case, assuming that physical quantities do not
depend on �, i.e., � /��=0. The axisymmetric equilibrium
flow structure for fluid Reynolds number Re=200 and Mach
number M =1 is shown in Fig. 3. The velocity components
are either symmetric �radial vr� or antisymmetric �azimuthal
v� and axial vz� with respect to equatorial plane z=0, and the
azimuthal velocity has maxima at the corners of the cylinder.
The flow develops two cells of poloidal �in the r−z plane�
circulation with inward direction at the equatorial plane.
Such flow pattern leads to the stratification of density, which
builds up near the corners of the cylinder.

The axisymmetric equilibrium von Kármán flow be-
comes unstable with respect to nonaxisymmetric perturba-
tions when the fluid Reynolds exceeds a critical value �Fig.
4�. This instability is the Kelvin–Helmholtz type instability,
occurring due to the presence of unstable velocity shear in
the fluid. For Mach number M =1, the critical value of the
Reynolds number is about Re�160. As shown in Fig. 4,
within approximately one viscous time, the unstable
modes grow and saturate at a new equilibrium state, which
consists of the axisymmetric part and relatively small non-
axisymmetric distortions with even azimuthal mode num-
bers, m=2,4 ,6 , . . .. Such a transition to nonaxisymmetric
equilibrium is crucial for the dynamos considered here.

The structure of the equilibrium von Kármán flow, in
particular the amplitude of the nonaxisymmetric distortions,
depends on the Reynolds and Mach numbers �Fig. 5�. As we
discuss in Sec. IV, such dependence affects the critical value
of the magnetic Reynolds number above which the dynamo
is excited.

IV. KINEMATIC DYNAMO

Our first step in this dynamo study is to solve the kine-
matic dynamo problem: determining the possibility of self-
generation of magnetic field for a given flow structure. For
fixed fluid Reynolds and Mach numbers, we solve the sta-
tionary time-independent �� /��=0� continuity �Eq. �10�� and

FIG. 3. �Color online� Structure of axisymmetric equilibrium von Kármán
flow driven by differentially rotating walls for Mach number M =1 and fluid
Reynolds number Re=200: �a� number density; �b� velocity. The same ele-
ments as in Fig. 2 are shown.
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FIG. 4. �Color online� Time dynamics of kinetic energy of different azi-
muthal harmonics in purely hydrodynamical �b=0� von Kármán flow for
Mach number M =1 and fluid Reynolds number Re=200. Corresponding
azimuthal mode numbers m are shown.
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Navier–Stokes �Eq. �11�� equations and find the steady-state
hydrodynamic equilibrium velocity veq �which includes pos-
sible nonaxisymmetric distortions�. Using that velocity, we
solve induction Eq. �12� as an eigenvalue problem for a mag-
netic field with different magnetic Reynolds numbers

	b = � � �veq � b� +
1

Rm
�2b , �17�

where 	 is an eigenvalue. This allows us to determine the
critical magnetic Reynolds above which the dynamo excita-
tion is possible. The results are presented in Fig. 6. The de-
pendence of the critical magnetic Reynolds on the fluid Rey-
nolds for Mach number M =1 is shown in Fig. 6�a�. The
vertical line at Re�160 separates the regions of axisymmet-
ric �Re�160� and nonaxisymmetric �Re�160� von Kármán
flows. Our simulations show that the kinematic dynamos are

not possible in axisymmetric flows. In nonaxisymmetric
flow at sufficiently high magnetic Reynolds number Rm, the
dynamo appears as a growing magnetic field with odd azi-
muthal harmonics, m=1,3 ,5 , . . ..

In our study of the plasma dynamo, we use a compress-
ible fluid model. Compressibility is related to the Mach num-
ber �Eq. �4��—the ratio of the peak driving velocity to the
sound speed. In general, the higher Mach number, the more
compressible the fluid, i.e., the more stratified its density. An
increase in the Mach number leads to changes in the equilib-
rium velocity field veq and, in particular, decreases the energy
in the nonaxisymmetric components of the flow �Fig. 5�b��.
This, in turn, affects the kinematic dynamo problem �Eq.
�17�� by increasing the value of the critical Rm �Fig. 6�b��.

From a comparison of Figs. 5 and 6, we can conclude
that the dynamo action in the case under consideration is
related to the nonaxisymmetric part of the von Kármán flow:
the stronger the nonaxisymmetric distortions, the lower the
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FIG. 5. �Color online� Kinetic energy of different azimuthal harmonics in
hydrodynamically stable von Kármán flow as a function of �a� fluid
Reynolds number Re for Mach number M =1; �b� Mach number M for fluid
Reynolds number Re=200. Corresponding azimuthal mode numbers m are
shown.
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FIG. 6. Critical magnetic Reynolds number Rm as a function of �a� fluid
Reynolds number Re for Mach number M =1; �b� Mach number M for fluid
Reynolds number Re=200. Vertical line in �a� separates the regions of axi-
symmetric and nonaxisymmetric equilibrium von Kármán flows.
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threshold value of magnetic Reynolds number for the onset
of the dynamo.

V. NONLINEAR SATURATION OF DYNAMO FIELD

Next, we analyze the state of the fully saturated dynamo
generated magnetic field and its back reaction on the flow. In
this section, we report the results of fully nonlinear simula-
tions of the system �Eqs. �10�–�12��. The nondimensional
parameters are chosen to be Re=200, Rm=1000, M =1, and

=0.05–1.0 �for Hall MHD runs�; simulations with these
parameters achieve fully saturated laminar states for the dy-
namo fields and the fluid flows.

Figures 7�a� and 7�b� demonstrate the time dynamics of
the kinetic and magnetic energies for a single-fluid MHD
case �
=0�. After the initial transient phase ���100�, the
flow becomes stationary. It is primarily axisymmetric, with
nonaxisymmetric distortion consisting of even azimuthal har-
monics �m=2,4 ,6 , . . .� and containing only about 1% of the
total kinetic energy. In such a flow, the dynamo is excited:
the magnetic field of odd harmonics �m=1,3 ,5 , . . .� grows
exponentially in time until it saturates at ��1500. In some
sense, the saturated magnetic field is in equipartition with the
nonaxisymmetric part of the flow. Here, Emag is about 0.3%
of the total energy of the flow Ekin. Due to the lack of an
axisymmetric magnetic field �m=0� and the small amplitude
of the nonaxisymmetric fields, the back reaction of the

dynamo magnetic field on the axisymmetric flow is very
weak and the imposed von Kármán flow is essentially un-
modified. The structure of the saturated magnetic field, with
the m=1 azimuthal harmonic visibly dominating the overall
structure, is shown in Fig. 8�a�.

In the Hall MHD case �
=0.05�, the dynamics of the
system is different �Figs. 7�c� and 7�d��. After the nonaxi-
symmetric flow with even modes develops �at ��100�, the
odd harmonics of the magnetic field start to grow, as in a
single-fluid MHD case. Now, however, when the odd har-
monics of the magnetic field become large enough �at
��500�, the Hall effect becomes significant and other har-
monics of the flow and the magnetic field grow, breaking the
initial even-odd symmetry. The saturated state of the flow
and the magnetic field contains all harmonics, though the
dominating parts are similar to a MHD case. The structure of
the saturated Hall dynamo field for 
=0.5 is shown in
Fig. 8�b�.

Figure 9 shows the dependence of the magnetic energy
for different azimuthal modes in the saturated state on the
Hall number 
. It is worth noting that the presence of the
Hall effect not only breaks the even-odd symmetry of the
system, but also reduces the energy of the saturated dynamo
field. For 
�0.2 the energy of the saturated dynamo field
scales as Emag�
−2 �b�
−1 for the field amplitude�. This is a
direct consequence of the magnetic induction Eq. �12�,
which in a saturated state �� /��=0� now reads

0 500 1000 1500 2000−20

−15

−10

−5

0

log Ekin

τ

10

6
8

2
4

0

5
79
3

1

0 500 1000 1500 2000−20

−15

−10

−5

0

log Ekin

τ

4
8
6

10

2

7
9

1
5 3

0

0 500 1000 1500 2000−20

−15

−10

−5

0

log Emag

τ

31
7

8

5
9

10

4
6
2

0

0 500 1000 1500 2000−20

−15

−10

−5

0

log Emag

τ

31
5 7
0924

8
6

10

Single-fluid MHD, ε=0 Hall MHD, ε=0.05
(a)

(b)

(c)

(d)

FIG. 7. �Color online� Time dynamics of kinetic Ekin and magnetic Emag energies of different azimuthal modes in von Kármán flow for Mach number
M =1, fluid Reynolds Re=200, and magnetic Reynolds Rm=1000, with azimuthal mode numbers m labeled. ��a�,�b�� Single-fluid MHD case �
=0�. Flows are
of even m modes while fields are odd in m. ��c�,�d�� Hall MHD case �
=0.05�. Initial behavior is similar to the single-fluid MHD case, but as the fields become
strong ���500�, the Hall effect becomes important. The final equilibrium includes both odd and even m.
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� � 	v � b −



n
�� � b� � b
 +

1

Rm
�2b = 0. �18�

Indeed, if the magnetic Reynolds number Rm and functions
v and n are independent of 
, then the solution for the mag-
netic field b can be written as

b =
h



, �19�

where h is a vector-function independent of 
 satisfying
equation

� � 
v � h −
1

n
�� � h� � h� +

1

Rm
�2h = 0 �20�

and boundary conditions �Eq. �15��. In the case under con-
sideration, it is clear that the scaling used in Eq. �19� is valid
only asymptotically for large Hall numbers 
 when the mag-

netic field b is small and its influence on the flow is negli-
gible. Under these assumptions, the plasma velocity v and
density n do not depend on 
 and correspond to the purely
hydrodynamical equilibrium that is determined by the fluid
Reynolds Re and Mach M numbers �as described in Sec. III�.
Thus, for relatively large Hall parameters �
�0.2�, the satu-
ration of the dynamo takes place due to the back reaction of
the Hall term in induction Eq. �12� long before the amplitude
of the magnetic field is large enough to change the flow
significantly. This is in contrast to the single-fluid MHD dy-
namo �and the Hall dynamo with 
�0.1�, where the satu-
rated state is achieved due to modification of the flow profile
by the growing dynamo field before the Hall effect plays a
considerable role. Scaling �Eq. �19�� suggests that the Hall
effect is unfavorable for the dynamo.

We note Refs. 22–24, where results of simulations for a
single-fluid MHD dynamo in a sphere with counter-rotating
incompressible flows are reported. Despite the difference in
geometry, our MHD results are in qualitative agreement with
the cases of laminar dynamos from Refs. 22 and 23, which
have dominant m=0 and m=2 harmonics in kinetic energy
and m=1 harmonic in magnetic energy during the saturation
phase. However, in contrast to the results of Ref. 24, we do
not observe the generation of an axial magnetic dipole with
m=0 and quasiperiodic oscillations.

VI. DISCUSSION

We have performed numerical simulations of a plasma
dynamo for cylindrical von Kármán flow using the extended
MHD code NIMROD. These NIMROD simulations provide
numerical support for the Madison Plasma Couette Experi-
ment �MPCX�. We have demonstrated that sustained dynamo
action and self-generation of magnetic field can be attained
for parameters that are achievable in the experiment. Our
results show that the critical magnetic Reynolds number re-
quired for dynamo excitation strongly depends on the plasma
compressibility: the more compressible the fluid, the higher
the critical Rm �Fig. 6�. Inclusion of two-fluid effects into the

FIG. 8. �Color online� Magnetic field lines of saturated dynamos: �a� single-
fluid MHD case �
=0�; �b� Hall MHD case �
=0.5�. Thickness of the line is
proportional to the magnitude of the field, while lighter �darker� color cor-
responds to upward �downward� direction of the field.
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model �in the form of the Hall term in the induction equa-
tion� does not influence the critical Rm, but does change the
structure of the saturated flow and the dynamo field �Fig. 7�.
The effect of the Hall term on dynamo field is negative: the
energy of the saturated magnetic field scales as 1 /
2 when
the Hall number is 
�0.2 �Fig. 9�.

The simulations show that the presence of nonaxisym-
metric distortions in the flow plays a decisive role in dynamo
excitation. Such distortions with even azimuthal mode num-
bers �m=2,4 ,6 , . . .� appear in the flow only for modest val-
ues of fluid Reynolds number Re�160 when the axisymmet-
ric shear flow becomes hydrodynamically unstable.
Therefore, in order to observe the dynamo effect in the
MPCX, the plasma has to be driven above a critical hydro-
dynamical threshold. For a helium plasma with number den-
sity n0=1018 m−3, electron temperature Te=16 eV, and ion
temperature Ti=0.9 eV, the peak driving velocity should be
V0=20 km /s.

Another issue is related to the detection of the laminar
dynamo field in the experiment. Since the saturated magnetic
energy of the dynamo field is only a small fraction of the
total kinetic energy, the resulting dynamo field is relatively
weak. For the helium plasma considered above, the volume-
averaged saturated dynamo magnetic field is B0�0.1 G.
Such a small field is still detectable even on the background
of the much stronger multicusp field from the rings of mag-
nets �about 103 G near the walls� due to the different azi-
muthal symmetries of these two fields.

Lastly, we remark on the model used in our simulations.
The single-fluid MHD model �
=0� is adequate for predict-
ing critical magnetic Reynolds numbers and the thresholds
for sustained dynamo action. The fully nonlinear saturated
dynamo state differs, however, when the Hall effect is in-
cluded. It appears that the isothermal Hall MHD model
�
�0� is a good “rough” approximation for the plasma un-
der experimental conditions, but this model also does not
capture the full details of the plasma dynamics. Other effects
such as thermal conductivity, electron pressure, and aniso-
tropic viscosity can all play important roles in a real plasma
experiment. These effects will be the subject of future
studies.
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